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ABSTRACT

A method for extending upper ocean density observations to the deep ocean is tested
using a large number of deep CTD stations in the California Current. The specific problem
considered is that of constructing the best estimate for the density profile below a certain
depth, D, given an observed profile above that depth. For this purpose, the estimated
disturbance profile is modeled as a weighted sum of empirical vertical modes (EOFs). The
EOFs were computed from the surface to 2000 m using 126 largely independent CTD
stations off Pt. Sur, California. Separate computations were made for the summer half-year
(mid-April to mid-October) and the winter half-year (mid-October to mid-April). For each
observed density profile, the EOF weights that determine the estimated profile were
obtained by performing a successive least squares fit of the disturbance density profile above
D to the first N EOFs. In this study, N was taken to be 7, which is the number of EOFs
considered necessary to account for the "signal” in the profiles as determined by the methods
of Preisendorfer et al (1981) and Smith et al. (1985). The estimated profiles were then
verified against the observed profiles to 2000 m, and the results are presented as a function
of the depth D.

In general, the vertical extension method is moderately successful at estimating
density fluctuations at and below 500 m from data entirely above 500 m. For example, if
data from the upper 300 m is used, the correlation between the estimated and observed
profiles at 500 m is .65 in summer and .75 in winter while the correlation at 1000 m is .40
in summer and .50 in winter. The correlations between the estimated profiles and a 7-

mode reconstruction of the observed profiles, representing the observed "signal", are




somewhat higher. A practical result of this study is that data down to only 200 m, as might
be acquired by a SEASOAR CTD survey, can estimate the "signal" part of the density

fluctuations at S00 m with a correlation of .47 in summer and .69 in winter.




1. Introduction

A classic problem in synoptic ocean analysis is that of estimating the deep ocean
density structure from observations in the upper ocean alone. The problem is of general
interest simply because there are far more observations in the upper ocean than in the deep
ocean. In addition, new ocean instruments and measuring devices such as SEASOAR now
make it possible to carry out hydrographic surveys of the oceanic mesoscale that are nearly
synoptic in time. This is possible, however, only if the measurements are restricted to rather
shallow depth ranges, e.g., the upper 200 m. The extent to which such an upper ocean
survey can adequately describe the dynamical features in and below the pycnocline at a
given time is therefore an important question. Subpycnocline density fluctuations on
synoptic scales are important in their own right, and they also influence the dynamics of the
pycnocline and upper ocean itself. For example, if hydrographic data from the upper ocean
is utilized in a numerical model, the extension of the data to the deeper ocean is critical.
The resulting subpycnocline density fluctuations influence the upper ocean currents through
the hydrostatic and geostrophic constraints, and they exert a strong influence on subsequent
model predictions (Hurlburt et al. 1990).

A number of recent studies have been directed at various aspects of this problem.
For example, Smith ef al (1985) evaluated the skill with which the amplitude of quasi-
geostrophic dynamical modes (which have important signals at mid-ocean depths) could be
estimated from mixed CTD/XBT surveys in the California Current system. For shallow
CTD and XBT casts (< 750 m), the best results were obtained using a method based on the

covariances between the quasi-geostrophic modal amplitudes and the amplitudes of the first




few empirical vertical modes. Another approach for specifying density disturbances in the
deeper ocean from upper ocean observations involves the use of feature models, which are
relationships between sea surface temperature patterns and subsurface thermal features
developed for the Gulf Stream and its warm and cold core rings (Robinson et al. 1988). Yet
another approach is the use of statistical relations between sea level and subsurface
temperature or pressure anomalies determined from numerical model simulations (Hurlburt
et al. 1990; Mellor and Ezer 1991). These studies have shown that fluctuations in model sea
level are highly correlated with fluctuations in model density at depths of 1-2 km.

In the present study, we test an empirical method which in some ways represents an
observation-based generalization of the feature model approach. The method consists of
fitting a disturbance density profile observed in the upper ocean to empirical vertical modes
(EOFs) determined from historical CTD data taken in the region of interest. The vertical
EOFs, which extend from the surface to the deep ocean, thereby represent a set of "feature
models” in this method. The method is potentially useful for real-time ocean analysis and
for initializing numerical ocean prediction models.

2, The Vertical Extension Method

The problem being considered is that of constructing the best estimate for the density
profile below a certain depth D, given the observed density profile above that depth. As
described in detail below, the estimated disturbance density profile is modeled as a weighted

sum of the first N empirical vertical modes. To begin the estimation procedure, the

potential density, ©, is expressed in terms of a mean part, 8(z), and a disturbance part,

0'@),




8(z) = 8(x) + 8'2), (2.1)
and ®’ is modeled as a weighted sum of the first N vertical EOFs. Denoting the estimated

profile by 6(z),

N
8 =Y 4 80), 22)

i=l

where €(z),i=1...N, are the EOFs and A are their amplitudes (weights). The A4 are
obtained by performing a successive least-squares fit of 8’ to the first N vertical empirical
modes above the depth D. Thus, performing least-squares fit of 8’ to the first mode

determines A4,

<8’81 >
Al S e————— ’ (2-3)
<81 8, >

where < > represents a vertical integral (numerical sum) from the surface to D. Performing

a least-squares fit of the residual profile, e - A, 8,, to the second mode determines 4,,

_ <(8'-4,8,)8,>
Az - <a:821> ’ (24)

and so forth up to 4,. The solutions for the 4 then determine the estimated profile, e(2),

through (2.2). In the following section the method is tested using a large number of deep

CTD stations off Pt. Sur, California.




3. The POST CTD Data

The CTD data used in this study were collected as part of the Point Sur Transect
(POST) program (Tisch e al. 1992). The observation site extends from 20 km to about 250
km offshore of Pt. Sur, California near 36°N (Fig. 1). All of the CTD stations were taken
in water depths greater than 2000 m, and most of them were taken seaward of the region
of strong coastal upwelling next to the coast. Table 1 gives a summary of all of the data
which was taken approximately every two months during the three year period from April
1988 through April 1991. Details of the quality control and processing of the raw CTD data
to compute the density perturbation: used in the following analysis can be found in Tisch
et al. (1992).

Since the goal of this study is to present regional EOFs, and to use them to test a
vertical extension method, we have tried to estimate the statistical significance of our
computations in several ways. First, we utilize an a prion knowledge of the annual
variability in the region by considering two halves of the year separately. One half-year runs
from mid-April to mid-October, hereafter referred to as the upwelling or summer season,
and the other half-year runs from mid-October through mid-April, hereafter referred to as
the winter season. With this choice, all of the POST cruises assigned to the upwelling
season occurred after the well known spring transition which occurs each year near the end
of March in this region (Strub et al 1987; Lentz 1987). Because the stations are spaced
close together, it is clear that not all of the CTD casts from a single cruise can be
considered independent. In order to retain as large a sample of CTDs as possible, and at

the same time to remove some of the redundancy caused by the station spacing, we culled
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Fig. 1. Location of the POST CTD stations used in this study.




out neighboring CTD stations that had an overall correlation greater than 0.5 with a station
previously selected for analysis. With this screening procedure, approximately half the
stations were culled out (see Table 1). As a result, the number of profiles selected for
analysis was ND = 64 in summer and ND = 62 in winter, and the average spacing between
selected stations was about 25 km. We thereby feel rather comfortable in applying standard
statistical techniques to the data. As a partial check on the robustness of our results, the
vertical extension method was also evaluated using the culled CTDs (the ones not used to
compute the EOFs). However, unless stated otherwise, all the analysis shown below is
based on the screened data.

Fig. 2 shows the potential density (a) and the buoyancy frequency (b) from the
surface to 2000 m, for both the summer and winter halves of the year. The stratification
associated with the mean pycnocline occurs in the upper 300 - 500 m, with the maximum
stratification near 60 m depth. The annual variation is rather small and confined to above
100 m where the water is less dense and more stratified in summer than in winter. As noted
earlier, the study area is located seaward of the narrow upwelling zone immediately next to
the coast and therefore it experiences a typical, but weak, annual cycle.

The density EOFs are shown in Fig. 3. The statistical significance of the EOF shapes
was estimated using an eigenvalue method (North et al. 1982) and a bootstrap method

(Smith 1984; Smith ef al 1985). In the eigenvalue method, one compares the sampling

error, 8 A, of a particular eigenvalue A, 8 A ~ A ./2 /ND , to the spacing A A, betweeni

and a neighboring eigenvalue (North et al. 1982). The shape of the EOF corresponding to A

is statistically significant only if 8 A < A A holds for both neighboring eigenvalues of A. The

9




Table 1. Dates of the POST cruises from which the CTD data for this study were taken.
Of the 250 total CTDs, only about half of them (126) were selected for analysis, while the
other half (124, were eliminated (culled). The selection procedure consisted of culling out
neighboring stations from the same cruise that had a correlation of .5 or greater with a
selected station. In this way, the average station spacing is about 25 km and the profiles so
selected have a greater degree of independence than would otherwise be the case.

Month/Year Number of | CTD Stations
Selected Culled Total

April 1988 7 5 12

August 1988 5 10 15

September 1988 7 5 12

November 1988 11 2 13 N

February 1989 9 3 12 |

March 1989 7 6 13 |
| May 1989 7 4 1 |

July 1989 5 6 1 |

September 1989 S 9 14
I November 1989 8 7 15

January 1990 S 9 14

March 1990 6 7 13

May 1990 7 8 15

June 1990 5 10 15

August 1990 5 8 13

October 1990 S 8 13

December 1990 4

February 1991 8

April 1991 S

10
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Fig. 2. Mean profiles of density (6 - 1000) to 500 m (a) and buoyancy frequency to 2000

m (b). For Apr - Oct the sample size is 64 and for Nov - Mar it is 62 (see Table 1).
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interpretation is that if a group of true eigenvalues lies within one or two & A of each other

(i.e, if AA <8A1) then they form an "effectively degenerate multiplet", and the sample

eigenvectors (EOFs) are simply a random (non-unique) mixture of the true eigenvectors
(North et al. 1982). Table 2 shows the results of the eigenvalue test. The shapes of no
more than the first S EOFs in summer and the first 4 EOFs in winter appear to be
significant, with overlapping degenerate pairs occuring among higher order EOFs. However
fewer EOF's may in fact be significant since North et al.’s criteria uses a relatively low level
of significance and our data are not entirely independent. In the bootstrap method, a
random number generator is used to draw a resample of ND new density profiles, with
replacement, from the original ND profiles (this resample may have more than one copy of
some profiles, and none of others) and an EOF analysis of this resample is performed. This
procedure is repeated many times and the distribution of the results is used to specify the
confidence limits shown in Fig. 3. The 95% confidence limits on the shapes of the EOFs
shown in Fig. 3 also indicates that the first 5 EOFs in summer and the first 4 EOFs in
winter are significant, i.e., have tight confidence limits away from zero.

Although as many as 4 or 5§ EOFs may be robust in the sense discussed above, we
will only attempt to ascribe a physical meaning to the first two modes. In general, the
density EOFs in Fig. 3 are similar to those presented in previous studies of this region
(Chelton 1980; Smith er al. 1985; Rienecker et al. 1987). Comparing Figs. 3a and 3b, it can
be seen that there is very little seasonal difference apart from a slight vertical displacement
of the modes in summer compared to winter. The first mode represents variability

associated with the equatorward vertical shear of the California Current in the main

19




Table 2. First 12 eigenvalues and their estimated standard error using the method of

North et al. 1982 described in the text. The standard error 8 A ~ A e, where e = (%)‘” and

N is the number of profiles used (64 in summer and 62 in winter).

20

A-8A A A+34 A-8A A A+8A
1 1.0672 1.2963 1.5255 0.6131 0.7473 0.8815
2 0.1734 0.2106 0.2479 0.1482 0.1806 0.2131
3 0.0476 0.0578 0.0680 0.0494 0.0602 0.0710
4 0.0259 0.0315 0.0370 0.0142 0.0173 0.0204
5 0.0142 0.0172 0.0202 0.0077 0.0094 0.0111
6 0.0079 0.0096 0.0113 0.0064 0.0078 0.0092
7 0.0065 0.0079 0.0093 0.0035 0.0042 0.0050
8 0.0036 0.0044 0.0051 0.0031 0.0038 0.0045 I
9 0.0021 0.0025 0.0030 0.0018 0.0022 0.0025
10 0.0016 0.0020 0.0023 0.0015 0.0018 0.0021
11
12




seasonal pycnocline that slopes upward toward the coast in the upper 500 m (Chelton 1980).
Note that in the present analysis, in which the CTD stations are from different locations as
well as at different times, variability represented by the EOFs can be either spatial or
temporal or both. The second mode, which is similar to the first mode except for a change
in sign above about 70 m, resembles the second, or "seasonal mode", identified off Northern
California by Bray and Greengrove (1993). It is interpreted here as the offshore response
of the mixed layer and main pycnocline to local variations in the alongshore wind stress.
Seaward of the shelf and slope, upwelling favorable winds, for example, produce offshore
transport in the mixed layer and downward motion in the pycnocline below. This leads to
density increases in the mixed layer (due to horizontal advection) and density decreases in
the pycnocline (due to vertical advection) with a zero crossing near the base of the mixed
layer as seen in Fig. 3. Note that mode 1, and also mode 2 in summer, has a significant
amplitude only in the upper 500 m. These relatively shallow modes of variability obviously
can not be very helpful in estimating density fluctuations below 500 m from observations
above that depth. On the other hand, the third and fourth modes, and the second mode in
winter, which have significant signals below 500 m, can be useful in this regard if they can
be detected in shallow CTD casts.

The above results concerning the statistical significance of the EOF shapes is
consistent with the study of North et al (1982). They showed that for many cases of
geophysical interest the sampling errors are often unacceptably large for samples of even
a few hundred independent realizations. It is important to note, however, that in this study

we are not especially concerned with the shapes of the EOFs per se. In the present application,
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we wish only to have a convenient basis set for representing disturbance density profiles.
The sample EOFs computed from our finite data set form such a complete basis set and a
subsum of these EOFs is expected to account for about as much variance as the
corresponding subsum of the true EOFs (North et al. 1982).

Note that the above tests on the EOF shapes provide no guidance in determining the
number of EOFs that can represent the profiles efficiently. For this purpose, additional
assumptions about the nature of the "noise" in the data must be made. In this study we
follow the ideas of Preisendorfer et al. (1981) and Smith et al. (1985). To distinguish signal
from noise, Preisendorfer et al. (1981) compare the computed eignevalues, or (equivalently)
the percent of explained variance, with the eigenvalues (or the percent of expalined
variance) generated by simulated density data having the same variance profiles as the
original data, but having no correlation with depth (Fig. 4). Although there is some
subjectivity in applying this method, the results in Fig. 4 suggest that only the first two EOFs
can be attributed to a vertically coherent signal. As pointed out by Smith et al (1985), this
test does not allow each successive eigenvalue to be evaluated independently of the lower
modes. To allow for this, and to compare each successive eigenvalue equally, Smith et al
(1985) compare the perceat of residual variance explained by a given mode to the
corresponding value generated by the simulated data. In this way, the variance explained
by the first EOF does not affect the evaluation of the second EOF, and the variance
explained by the second EOF does not affect the evaluation of the third EOF, etc. The
result of this calculation (Fig. 5), taking into account the uncertainty of the eigenvalues

(bootstrapped confidence limits), indicates that the first seven EOFs contain a vertically
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Fig. 4. Percent of variance (scaled eignevalue) accounted for by each EOF, up to mode
number 10, for both the actual (screened) data (top curves) and the simulated data (bottom
curves). (a) Apr - Oct and (b) Nov - Mar. The 95% confidence limits on the simulated

data are estimated using the bootstrap method described in the text.
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Fig. 4b.
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Fig. 5. (a) Same as Fig. 4, except the percent of residual variance accounted for by each

EOF is shown.
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Fig. 5 (b). Same as Fig. 4, except the percent of residual variance accounted for by each

EOF is shown.
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coherent signal. The result of this test is therefore quite different from that of the
Preisendorfer et al. (1981) test (Fig. 4). A subjective comparison between the observed
profiles of disthrbance density and the corresponding profiles reconstructed from the first
seven EOFs (see Fig. 11, first frames) supports the choice of seven modes for the cut-off
between signal and noise. At the same time, a similar comparison between the observed
profiles and those reconstructed from only 2 modes (not shown) reveals large differences
that mnst physical oceanographers would not consider attributable simply to "noise”. On the
basis of this analysis, subjective as it admittedly seems to be, we consider all of the profile
variability that is contained in the first seven modes to be "signal" and the remaining
variability to be "noise". In total, the first seven modes account for over 99 percent of the
variance in both winter and summer (Table 2). Having identified the first 7 EOFs as a
convenient basis set for describing the observed "signal", we now examine the extent to
which these modes can be identified from shallow CTD casts (to Z =D < 2000 m) and used
to estimate the profiles below D.
4, Results of Vertical Extension

In this section, density profiles below the depth D are estimated by fitting the first
7 EOFs to the selected profiles above D. The accuracy with which an estimated profile (E)

matches an observed profile (O) is measured by their correlation coefficient, r,

r = <E'O'>
(<(E'®> < (0 >)

, (4.1)

and a skill score, s,
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= 1_ <(E"O)2>

<> 4.2)

In (4.1) and (4.2), < > denotes an average, at a fixed depth, over all of the selected profiles
for the half-year in question and ()’ denotes the departure from this average. Although r

and s are both equal to 1 for a perfect estimate, and both decrease as E departs from O, s
becomes negative when the mean square error exceeds the observed variance.

Fig. 6 shows how the estimated profiles approach the observed profiles as more and
more modes are used, and the fitting is performed over the full water column (D = 2000
m). In both halves of the year the correlation and skill are seen to increase as the number
of EOF modes that are used to estimate the profiles is increased. The correlation and skill
tend to be greater in the upper part of the water column, and to decrease systematically with
depth. This is because the successive EOFs are constructed so as to explain the maximum
amount of vertically coherent, residual variance, and this is much larger in the upper ocean
than at depth. From the earlier discussion about profile "noise”, it is clear that the relatively
poor correlations below about 1500 m when 7 EOFs are used in the fit (last frame) are
entirely due to noise representing no more than 1% of the total variance (Table 3). As the
number of EOFs that are used is increased beyond 7 (not shown), the remaining variance
is accounted for and r and s approach 1 at all depths. It is interesting that the way in which
the individual modes contribute to the total solution is different in summer than in winter.
For example, the 2nd and 3rd EOF make important contributions to the correlations at all

depths in winter. However in summer, the 2nd EOF seems to be important only in the
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Fig. 6 (a). Correlation (r) and skill (s) of estimating the observed profiles when the fitting
is performed to 2000 m, and N EOFs are used. Profiles of r and s are shown for N = 1, 2,
3,4, S, and 7 for both the summer half-year, Apr - Oct (a) and the winter half-year, Nov -
Mar (b). ND is the number of profiles used.
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Table 3. Percent variance (PV) and cumulative percent variance (CPV) accounted for by

the first 7 EOF modes. Data taken from Fig. 4.

Mode April = October November - . March

# PV CPV PV CPV
1 78 78 71 !
2 13 91 18 89
3 4 95 6 95

97

98
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mixed layer while the 3rd EOF is very significant in the depth range of 300 - 1000 m.

The central result of this study, the skill of estimating density profiles from data in
the upper ocean alone, is presented in Fig. 7. For convenience, we show the results in six
separate frames, each frame corresponding to a different value of the depth D used to
define the "upper ocean”. The successive frames show how well the estimated profiles
match the observed profiles, as measured by 7 and s, as the data-EOF fitting is performed
over an increasing depth of the upper ocean. In general, the correlation and skill decrease
rather rapidly below D. Furthermore, the decrease with depth is more rapid in summer
than in winter. Shallow casts to 200 or 300 m have distinctly less skill at estimating density
fluctuations in the 500 - 1000 m depth range in summer than in winter. For example, data
to only 200 m tan be used to estimate the density disturbances at 500 m with a correlation
of about .4 in summer and .6 in winter. This result is operationally significant because
shallow casts to 200 m are typical of the SEASOAR CTD system. The drop-off in
estimation skill below D (for D < 500 m say) is due in part to the relatively shallow nature
of the major baroclinic features represented by the first 7 EOFs in this region of the
California Current.

We now examine the effect of observational "noise" in the CTD profiles. As a result
of the analysis presented above, density fluctuations accounted for by EOF modes higher
than 7 are considered indistinguishable from vertically incoherent "noise”. Since no vertical
extension method can be expected to explain such noise, it is of interest to know how well
the present EOF method can estimate simply the "noise-free" part of the density profile, i.c.,
the "signal”. To address this issue, we present in Figs. 8 - 9 the same information as in Figs.

6 - 7, except that here the correlation and skill are computed between the estimated profiles
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shown for both the summer half-year (a) and the winter half-year (b).
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and the noise-free, or filtered, profiles. The filtered profiles are obtained by fitting the
observed profiles (to 2000 m) to the first 7 EOFs. It is not known whether the results shown
below are sensitive to this particular method of removing noise from the profiles or whether
any other vertical smoothing or filtering operation would produce similar results. Fig. 8
shows how the fit (to 2000 m) to the filtered profiles, as measured by r and s, improves as
more modes are used. The fit is nearly exact when 6 modes are used (last frame) since the
filtered profiles themselves are reconstructed from only the first 7 modes. The ways in
which the various modes contribute to the filtered profiles are different in summer than in
winter as seen before in Fig. 6.

The success with which the EOF method can estimate the filtered profiles using data
entirely above D, is shown in Fig. 9. This should be compared to the results for estimating
the observed, unfiltered, profiles shown in Fig. 7. As with estimating the observed profiles,

the correlations and skill also decrease below D, but the decrease is not nearly so rapid for
D >400m. In fact, the results show that observations down to only 500 m can be used to
estimate the filtered profiles below 500 m quite accurately. For shallower casts, i.e.,
D 1300m, there is also a noticeable improvement compared to estimating the observed,

unfiltered, profile but this occurs mostly below 1000 m. The improved correlations in the
deeper ocean is entirely due to the removal of noise. The last frame in Fig. 9 shows that
the EOF method can estimate the filtered profiles to 2000 m quite accurately with data to
only 1000 m.

In an aitempt to evaluate the estimation procedure on a somewhat independent set

of data, we also applied the method to estimate the culled profiles (Table 1). In this
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evaluation, the same seven EOFs that were used to estimate the selected profiles (Fig. 3)
were also used to estimate the culled profiles. The results, shown in Fig. 10, are similar to
those for the selected profiles (Fig. 9) except that the method is less successful at estimating
the culled profiles in winter. This degradation could be due to the smaller sample size used
in winter than in summer. Tests with a larger sample of truly independent profiles, ones
acquired on different cruises at different times, are needed to determine reliably how well
the method would perform in practice.

To compliment the foregoing statistical information on the performance of the EOF
estimation method, we present in Fig. 11 a number of direct comparisons between observed
and estimated profiles. At least one profile from each of the POST cruises was selected for
display in order to show the different performance characteristics of the estimation method.
Fig. 11a-t shows the observed and filtered profiles in the top left frame and the estimated
profiles, for D = 200, 300 and S00 m, respectively, in the other frames.

Some of the features to note in Fig. 11 include the following. The character of the
noise in the observed profiles is seen by comparing the observed and filtered profiles in the
top left frames. As defined here, "noise" is simply density fluctuations not accounted for by
the first 7 EOFs. Some profiles are seen to have very little noise (Fig. 11e, h, and 1); some
have noise in especially short vertical scales (Fig. 11b, g, r, and t); and other profiles have
noise in somewhat larger vertical scales (Fig. 11a, ¢, m, n, and q). Note that the relatively
large amplitude disturbance between 500 - 1500 m in profile q, which is attributed to noise
by comparison with the filtered profile, does not appear at a nearby profile from the same

cruise (r), and in fact it does not appear in any other profile from that cruise (not shown).
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The way in which the estimation improves as D increases from 200 to 500 m is seen by
comparing the profiles in the other three frames. In some cases the entire profile can be
estimated quite accurately from only 200 m of data (Fig. 11e, f, 1, p, and s), while in other
cases 200 m of*data is clearly inadequate (Fig. 11c, i, j, k, m, n, o, and t). Note that most
of the successful cases are in the winter half-year and most of the unsuccessful cases are in
the summer half-year. This is consistent with the difference in correlations shown in Fig.
7a compared to Fig. 7b.

Another point worth noting from the results in Fig. 11 is the way in which the
amplitude of the different modes that make up the estimated profile changes as the depth
(D) of data used in the fitting procedure is changed. In Fig. 11a for example, the amplitude
of the first mode is almost the same in all four fames, indicating that it is generally well
established by data down to only 200 m. This characteristic of the first mode also holds at
the other locations shown in Fig. 11b, c, ... etc. It also holds to a lesser extent for the
second mode, but not for the third and higher modes. This result indicates that the higher
modes, unlike the lowest two modes, are not well established by shallow data alone. The
lowest modes can be rather well established by fitting over a shallow depth (200 m) because
they have their strongest characteristic signal in the upper 200-300 m. On the other hand,
the higher modes (n > 3) have a greater part of their signal below that depth (Fig. 3).
When these higher modes are active in a given profile, deeper data is needed to estimate
the given profile accurately.

In most cases the estimated profile using 500 m of data matches the filtered profiles

quite well. This is reflected in the rather high correlation between the filtered and
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Fig. 11. The top left frame shows the observed disturbance density profile (solid) and the
filtered profile (dashed) obtained from a 7-EOF reconstruction as described in the text. The
other three frames show the filtered profile (solid) and the estimated filtered profile
(dashed) obtained by fitting the 7 EOFs to the filtered profile above D, for D = 200, 300,

and 500 m, respectively.
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estimated profiles with D = 500 m shown in Fig. 9a, b (bottom, middle frames).
Occasionally, however, even with 500 m of data, the estimation appears to miss some
potentially important features (Fig. 11a, f, j, o, and g). Of course, the extent to which an
estimate of the filtered profile can be considered satisfactory depends on the use to which
the estimated profile will be put. The above results indicate that the method can estimate
filtered profiles using data from the upper 500 m that would be satisfactory for initializing
operational numerical models designed to nowcast and forecast the oceanic synoptic scale.
The method might also be useful for extending historical CTD profiles (e.g., the CALCOFI
data) to greater depth.
S. Summary and Conclusions

A method for extending upper ocean density profiles to the deeper ocean has been
developed and tested using a large number of deep CTD stations oft Point Sur, California.
The method involves fitting a shallow density profile to the first N full column EOFs
determined from historical data. N is the number of EOFs that are needed to represent the
"signal” in the observed profiles efficiently. Our analysis, following the ideas of
Preisendorfer et al. (1981) and Smith et al. (1985), resulted in N = 7 for our data. The
EOFs found in this study are quite similar to those described by Chelton (1980), Rienecker
et al (1987) and Bray and Greengrove (1993) for the nearby California Current region. The
first mode is due to fluctuations in the baroclinic structure associated with the equatorward
vertical shear of the California Current in the main pycnocline, while the second mode
appears to represent a response in the mixed layer and the pycnocline to variations in

alongshore wind stress. The third and fourth modes have deeper structures. All of these
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modes make important contributions to the success of the vertical extension method.

When the vertical extension method is tested against the observed profiles the results
are moderately successful (Fig. 7). Profiles to depths shallower than 500 m can be extended
to 500 m with an over all correlation and skill that depends on the time of year as well as
the depth of the profiles. For example, profiles to 300 m can be extended to 500 m with
noticeably better correlation than ones to only 200 m. In all cases the extensions from
depths shallower than 500 m to depths greater than 500 m are notably more successful in
winter than in summer. In all cases the estimated profiles correlate better with filtered
(noise-free) profiles, reconstructed from the first 7 EOFs, because the method cannot
estimate variability associated with vertically incoherent noise. The improved correlations
due to removing such noise is significant at all depths below D in winter, but only below
about 1000 m in summer.

The above results raise important questions about the generality of the vertical
extension method, and whether it would be successful in other geographical regions. The
success of the method rests on its ability to detect, and differentiate between, the EOF
modes in the region of interest from only a limited amount of upper ocean data. As such,
its success depends on the distinctive shapes of the different modes and most importantly
on whether the modes have significant signals at depth. On the basis of these considerations
we expect the method would be equally successful in all the dynamically active parts of the
world ocean where the internal density fluctuations are associated with moderate to deep
baroclinic structures similar to those that exist in the California Current off Point Sur.
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